1	EMPIRICAL REALIZED NICHE MODELS FOR BRITISH HIGHER AND
2	LOWER PLANTS – DEVELOPMENT AND PRELIMINARY TESTING
3	
4	Simon M. Smart ¹ *, W. Andrew Scott ^{1,7} , Jeanette Whittaker ^{1,8} , Mark O. Hill ^{2,9} ,
5	David B. Roy ^{2,10} , C. Nigel Critchley ³ , Lorenzo Marini ⁴ , Christopher Evans ^{5,11} ,
6	Bridget A. Emmett ^{5,12} , Edwin C. Rowe ^{5,13} , Andrew Crowe ^{1,14} , Mike Le Duc ^{6,15} ,
7	Robert H. Marrs ^{6,16}
8	
9	1 NERC Centre for Ecology and Hydrology, Library Avenue, Bailrigg, Lancaster,
10	LA1 4AP, UK
11	7 Email <u>was@ceh.ac.uk</u>
12	8 Email jhart@ceh.ac.uk
13	14 Email <u>acrowe@ceh.ac.uk</u>
14	
15	2 NERC Centre for Ecology and Hydrology, Wallingford, Crowmarsh Gifford,
16	Benson Lane, Cambridgeshire PE28 2LS, UK
17	9 Email moh@ceh.ac.uk
18	10 Email dbr@ceh.ac.uk
19	
20	3 ADAS Woodthorne, Wergs Road, Wolverhampton WV6 8TQ, UK
21	Email Nigel.critchley@adas.co.uk
22	
23	4 Department of Environmental Agronomy and Crop Production, University of
24	Padova, Viale dell'Università 16 - 35020 Legnaro, Padova, Italy
25	Email Lorenzo.marini@unipd.it

- 2 5 Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road,
- 3 Bangor, Gwynedd, LL57 2UW, UK
- 4 11 Email <u>cev@ceh.ac.uk</u>
- 5 12 Email <u>bae@ceh.ac.uk</u>
- 6 13 Email ecro@ceh.ac.uk
- 7
- 8 6 Applied Vegetation Dynamics Laboratory, School of Biological Sciences,
- 9 Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
- 10 15 Email <u>mled@liverpool.ac.uk</u>
- 11 16 Email calluna@liverpool.ac.uk
- 12 * Corresponding author. Tel: +44 1524 595823. Email address: ssma@ceh.ac.uk
- 13
- 14

- 16 <u>Question</u>: Can useful realised niche models be constructed for British plant species
- 17 using climate, canopy height and mean Ellenberg indices as explanatory variables?
- 18 Location: Great Britain.
- 19 <u>Methods</u>: General Linear Models were constructed using occurrence data covering all
- 20 major natural and semi-natural vegetation types (n=40683 quadrat samples). Paired
- 21 species and soil records were only available for 4% of the training data (n=1033) so
- 22 modelling was carried out in two stages. First, multiple regression was used to express
- 23 mean Ellenberg values for moisture, pH and fertility, in terms of direct soil
- 24 measurements. Next, species presence/absence was modelled using mean indicator
- 25 scores, cover-weighted canopy height, three climate variables and interactions

between these factors but correcting for the presence of each target species in training
 plots to avoid circularity.

3 Results: 803 higher plants and 327 bryophyte were modelled. 13% of the niche 4 models for higher plants were tested against an independent survey dataset not used to 5 build the models. Models performed better when predictions were based only on 6 indices derived from the species composition of each plot rather than measured soil 7 variables. This reflects the high variation in vegetation indices that was not explained 8 by the measured soil variables. 9 <u>Conclusions</u>: The models should be used to estimate expected habitat suitability rather 10 to predict species presence. Scenario testing at large scales is also possible using input 11 from process models, yet least uncertainty attaches to their use as risk assessment and 12 monitoring tools on nature reserves because they can be solved using mean 13 environmental indicators calculated from the existing species composition, with or 14 without climate data. 15 16 Keywords: Biodiversity, Conservation, Climate change, Ellenberg values, GLMM, 17 Great Britain, Large-scale, Logistic regression, Risk assessment, Spatial 18 autocorrelation 19 20 Introduction

In human dominated regions, changes in ecosystem function are increasingly recognised as being caused by multiple drivers such as land management, air pollution and climate change (Sala et al. 2000). Unravelling the relative contributions of these drivers, environmental covariates and their interactions relies on several approaches including experiments (Clark & Tilman 2008), retrospective signal attribution studies

(e.g. Stevens et al. 2004; Smart et al. 2006) and prospective modelling (Wamelink et
 al. 2003).

Although the development of process-based models is important, species and
habitat conservation policies require the assessment of impacts on a large number of
individual species (van Dobben et al. 2004; UK Biodiversity Steering Group 1995).
However, developing population dynamic models for each species of concern is not
possible or at least would require unrealistic resourcing.

8 In northern Europe, the existence of large national species occurrence databases 9 provide opportunities for empirical, data-intensive modelling of species' realised 10 niches along climatic and other abiotic gradients (eg. Guisan et al. 2002; Bakkenes et 11 al. 2002; Randin et al. 2006; Araújo & New 2006). We used multiple logistic 12 regression to develop General Linear Models (GLM) of the realised niche for British 13 higher and lower plants. These models quantified the response of each species to four 14 abiotic gradients; soil fertility, soil pH, soil moisture and successional status as 15 inferred from mean Ellenberg fertility (N), soil reaction (R) and moisture (F) values 16 and cover-weighted canopy height respectively. These four gradients reflect the major 17 constraints on biomass production for plants, namely light, water and nutrients, and 18 therefore the principal axes along which niches differentiate (Geider et al. 2001). 19 Since the distributions of many British species are known to be climatically 20 constrained (Preston & Hill 1997; Preston 2007) three climate variables were also 21 included.

Niche models were produced for as many higher and lower plant species as possible by combining botanical databases representing the abiotic preferences of species in Britain across all major natural, semi-natural and artificial plant assemblages. Since soil measurements were only available for a subset of the total

1 training dataset mean unweighted Ellenberg indices (Ellenberg et al. 1991) were used 2 as explanatory variables in addition to climate and canopy height, but translation 3 between soil data and mean Ellenberg indices was achieved by constructing multiple 4 regression models predicting the latter in terms of the former. Ideally, Ellenberg 5 values would be completely replaced by direct soil measurements (e.g. Wamelink et 6 al. 2005a) but the cost of pairing soil data with plant species occurrence for most of a 7 national flora is usually prohibitive. Thus, in Britain, sufficient paired measurements 8 of soil properties and vegetation are only available for a limited number of plots and 9 species but all major abiotic gradients are covered. Using this subset, multiple 10 regression equations were constructed to enable the mean unweighted Ellenberg 11 indices, used as explanatory variables in the niche models, to be expressed in terms of 12 a range of measured soil variables. This calibration step allows mean Ellenberg values 13 rather than measured soil properties to be used as explanatory variables in turn 14 allowing the complete training dataset of quadrat samples to be used in the 15 construction of niche models. The benefits of this approach are two-fold: First, 16 models can be generated for many more species than just those present in plots with 17 soil data, and second, predictions of habitat suitability for each modelled species can 18 be readily solved using just the species composition of the vegetation, with or without 19 climate data. The disadvantage is that each species' response to measured gradients of 20 soil conditions can only be expressed indirectly via the intermediate multiple 21 regression models linking mean Ellenberg values to soil variables. We sought to test 22 whether this disadvantage was outweighed by the ability to produce models for a large 23 number of species and where each model could be readily solved at small scales using 24 minimal environmental measurements.

25

In summary our objectives were as follows (see Fig 1):

1	1.	Build simple realised niche models for as many higher and lower plants as
2		possible in the British flora, incorporating small-scale abiotic (B1) and larger-
3		scale climate variables (B2).
4	2.	In the absence of soil measurements from all model training plots, use mean
5		Ellenberg indicator values as explanatory variables for soil pH, soil moisture
6		and fertility (B1).
7	3.	Based on a smaller random subset of plots, derive multiple regression
8		equations that explain mean Ellenberg values in terms of measured soil data
9		(B3).
10	4.	Decompose the variation in mean Ellenberg values explained by measured soil
11		data into unique and overlapping components (B3).
12	5.	Test niche models against independent observations (T1,T2).
13	6.	Compare the performance of models solved using mean Ellenberg values
14		based on observed species composition (T1) versus mean Ellenberg values
15		predicted from measured soil data (T2).
16		
17	Metho	ods
18		
19	Selecti	ion of botanical data
20		Quadrat data were used from four large-scale botanical surveys of the plant
21	comm	unities of Great Britain (England, Wales and Scotland) (Table 1). The largest
22	datase	t was that used to construct the national synoptic catalogue of plant
23	comm	unities known as the National Vegetation Classification (NVC) (Rodwell 1991).
24	These	data were sampled using a phytosociological approach and contributed by far
25	the lar	gest number of quadrat samples. The targeting of homogenous stands of

vegetation could however, constitute a bias toward sampling the regions close to a
species' abiotic optimum whilst under-sampling sub-optimal conditions associated
with ecotones or heterogenous, disturbed vegetation (Lájer 2007; Braunisch et al.
2008). Therefore three other vegetation survey datasets were also included. These
were all based on stratified, random sampling within landscapes or habitat type (Table
1).

7

8 Niche model construction

9 Each GLM model used presence/absence data for each plant species in each 10 plot as the response variable. Unweighted mean Ellenberg values were calculated for 11 each plot based on the list of values recently updated for the British flora (Hill et al. 12 1999; Hill et al. 2000). Mean cover-weighted canopy height was used as an index of 13 the disturbance/successional status of the vegetation in each quadrat. Average canopy 14 height for each species was based on values taken from Grime et al. (1995) and Stace 15 (1997). Bryophytes were excluded from these calculations. To avoid circularity, 16 during model construction, indicator values of the species being modelled were 17 excluded from calculation of the mean indices used as explanatory variables. 18 Variable selection was carried out by first testing the explanatory power of 19 each variable separately (both linear and quadratic models) and then entering all those 20 that were significant, and their interactions, into a stepwise elimination procedure 21 (proc logistic; SAS Institute, 1999b). Significance was tested using likelihood ratio 22 tests (Bio 2000). All analysis and data manipulation steps were carried out using SAS 23 procedures and the SAS macro language (SAS Institute, 1999a). 24 After final models were selected a repeat analysis was carried out to quantify

25 the influence of correlation between abiotic variables and spatial structure in the

1	training data (Dormann 2007). Given the debate that still surrounds the relative
2	importance of spatial autocorrelation in species distribution modelling (Hawkins et al.
3	2007; Diniz-Filho et al. 2003), we adopted a simple, precautionary approach to the
4	problem: To estimate the importance of spatial correlation with abiotic variables,
5	spatial location was quantified by seven variables for each quadrat in the training data
6	(x and y coordinates and their squared terms and interactions) (Borcard et al. 1998;
7	Corney et al. 2006). These terms were forced into each species model prior to
8	backward selection of those significant variables that already formed the basis of each
9	species model. This approach ensured that variance in the species presence data that
10	could be explained by spatial trends was removed before re-testing combinations of
11	abiotic variables. Abiotic explanatory variables that were no longer significant after
12	having first fitted spatial terms were then highlighted in the final table of model
13	equations (Appendix 3).
14	A second subset of models were also produced where, in addition to the three
15	mean Ellenberg indices and cover-weighted canopy height, three climate variables
16	were also available for stepwise selection. These were long-term annual averages
17	(1961-1999) for maximum July temperature, minimum January temperature and
18	precipitation for the 5km ² containing each quadrat location. Data were extracted from
19	the UK Climate Change Impacts Program database at
20	www.metoffice.gov.uk/climatechange/science/monitoring/ukcip.html. Spatial
21	autocorrelation analyses were not carried out on this subset of models because climate
22	gradients across Britain are already known to be strongly spatially structured (Corney
23	et al. 2006).
24	

25 Explaining mean Ellenberg values with soil variables

1	Multiple regression was used to model mean Ellenberg indices in terms of five
2	soil variables; % organic carbon, % organic nitrogen, % soil moisture, soil pH and
3	Olsen's extractable phosphorus. All were measured in a subset of the quadrats
4	(n=1033) in the Countryside Survey dataset recorded in 1998 and 1999 (see Black et
5	al. 2001 for full details). The best minimum adequate model (Crawley 2007) was
6	determined by fitting sequences of soil variables plus their quadratic and interaction
7	terms and comparing the performance of pairs of simple and more complex models by
8	deviance reduction (F) tests (e.g. Manning et al. 2005). This process was carried out
9	for loge, logit and untransformed response variables. Because the calibration dataset
10	of paired soil measurements and mean Ellenberg indices consisted of quadrats nested
11	in the 1km sample squares of the Countryside Survey, the 1km square was treated as a
12	random effect in a general linear mixed model (GLMM) implemented in SAS proc
13	mixed (Little et al. 2000). The degrees of freedom attaching to each model were
14	downweighted according to the approximation of Satterthwaite (1946).
15	The importance of each explanatory variable in each final model was expressed by
16	determining the unique (partial) contribution of each variable in the presence of all
17	other selected variables and then comparing this to its explanatory power when
18	entered as the only variable in each model (Singer 1998).
19	
20	Calculation of model pmax values
21	At the scale of small vegetation sampling plots, species that are inherently less
22	frequent even when abiotic conditions are optimal, will have lower predicted
23	maximum probabilities than more abundant species (Manel et al. 2001; Liu et al.
24	2005). Hence, differences in probability of occurrence between species will reflect
25	overall patterns of scarcity in the training dataset as well as reflecting the favourability

of abiotic conditions. If predicted probabilities are divided by the maximum
probability (*pmax*) possible then these effects are removed enabling probabilities to be
used as standardised indices of habitat suitability. Two methods were used to
determine *pmax* values (see Appendices 1 and 2).

5

6 *Model testing*

7 A subset of niche models were tested against independent species presence 8 data recorded as part of a botanical monitoring program for conservation management 9 of agriculturally managed land in Britain. Monitoring plots were located in six 10 geographically dispersed regions designated as Environmentally Sensitive Areas (ESA). Test data consisted of 244 4m^2 quadrats recorded in 1995 or 1996 in a range 11 12 of species-rich grassland and heathland communities. In each quadrat a full list of all 13 vascular plants and bryophytes was made. In addition, soil was sampled immediately 14 adjacent to each quadrat and analysed to provide representative values of soil 15 variables (see Critchley et al. 2002 for full details).

16 106 plant species occurred in greater than 5 quadrats. These were selected for 17 model testing. Two series of predictions were made. First, niche models were used to 18 predict the occurrence of each of the 106 plant species in each ESA quadrat using the 19 mean unweighted Ellenberg N, R and F values and cover-weighted canopy height 20 derived from the plant species composition of each quadrat. Second, measured soil 21 pH, %C, %N and estimated % soil moisture were used to predict corresponding mean 22 Ellenberg values instead of calculating them directly from each species list. Average 23 soil moisture content was not measured directly but was inferred from soil texture 24 class using the equivalence table in Anon (1998). The AUC statistic was then 25 computed across the range of predicted values for each species using a macro written

in base SAS. Recent concerns have been raised over the sensitivity of the AUC
statistic to the inclusion of unoccupied plots far from the favourable niche space of
each species (Lobo et al. 2008). Since our test dataset was constrained to sample
habitats for which the test species were broadly characteristic, this issue is not likely
to undermine interpretation of AUC statistics as model performance measures.

6

7 **Results**

8 Explaining mean Ellenberg values with soil variables

9 Multiple regression models were constructed between all three mean 10 unweighted Ellenberg scores and soil variables (Table 2). The percentage of observed 11 variation explained was moderately high. Ellenberg F was best explained solely by % 12 soil moisture content while selection of the best minimum adequate model vindicated 13 treatment of mean Ellenberg R and N values as composite indices best explained by 14 multiple soil measurements (Table 2). Mean Ellenberg R was best explained by a 15 combination of % soil moisture, soil pH and % carbon. The sign of the regression 16 coefficients (Table 2) indicated that species associated with lower substrate pH (low 17 Ellenberg R) tend to be favoured by wetter substrates with a higher carbon content. 18 Examination of the independent versus partial contribution of selected variables 19 showed very considerable overlap so that the total explained variation mainly 20 comprised joint variation in %C, % soil moisture and soil pH (Fig 2a). This reflects 21 their correlation across the training dataset, in part related to obvious mechanistic 22 relationships. For example, waterlogging and lack of aeration inhibits decomposition 23 but enhances base cation mobilisation and leaching and hence, low base status and 24 low pH. The highest unique explanatory power was attributable to substrate pH as

expected since Ellenberg R values were designed to track a substrate pH gradient (Fig
 2a).

3 Mean Ellenberg N was best explained by % soil moisture, soil pH, % carbon 4 and % nitrogen (Fig 2b). Quadratic terms for moisture content and pH captured 5 expected curvi-linear relationships with productivity. Hence, mean Ellenberg N values 6 tend to be lowest at the extremes of soil moisture and pH, and highest under mesic 7 conditions (Emmett et al., 2004). However, again, the majority of the explained 8 variation was shared between predictors, whilst soil moisture content 9 (linear+quadratic terms) had the highest unique explanatory power overall (Fig 2b). 10 Overall therefore, the explanatory power of any one variable could not be completely 11 separated from the others once more reflecting mechanistic relationships between soil 12 moisture, carbon and nitrogen content and pH and their inter-correlation across the 13 training data. %N had the lowest unique explanatory power of all terms selected for 14 the final model (Fig 2b).

15

16 Model building

17 Of 2059 higher and lower plant species recorded in the training dataset, 1252 18 occurred in more than 10 quadrats. Of these a GLM model with at least one 19 significant explanatory variable could be constructed for all except 11 species. A 20 further 111 species were modelled but then rejected from further validation and 21 testing. These species have a coastal distribution (defined following Hill et al. 2004). 22 Because we lacked quadrat-scale data on salt load either from the atmosphere or 23 through inundation, we could not incorporate quantitative response along this 24 important gradient. These species models were therefore considered inadequately 25 specified and results are not presented. In total, models were produced for 327

1	bryophytes and 803 higher plants (Appendix 3 – supplementary material). This
2	amounts to 26% of the UK bryophyte flora as listed in BRYOATT (Hill et al. 2007)
3	and 44% of the UK higher plant flora as listed in PLANTATT (Hill et al. 2004).
4	Among higher plants, 15% of alien casuals and recent introductions (neophytes), and
5	55% of native species have models. For 639 of these species (286 bryophytes and 383
6	higher plants), at least one climatic gradient explained significant variation in the
7	presence of other abiotic variables (Appendix 4). As expected, rarer plants are much
8	less likely to have models than more widely distributed species (see Appendix 5).
9	
10	Model testing
11	Of the 106 plant species models that were tested (13% of the higher plant
11 12	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved
11 12 13	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the
11 12 13 14	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the test quadrats or where mean Ellenberg indices were predicted from observed soil data
 11 12 13 14 15 	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the test quadrats or where mean Ellenberg indices were predicted from observed soil data using the multiple regression equations. AUC statistics showed that predictions of
 11 12 13 14 15 16 	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the test quadrats or where mean Ellenberg indices were predicted from observed soil data using the multiple regression equations. AUC statistics showed that predictions of habitat suitability based on mean Ellenberg values derived from the observed species
 11 12 13 14 15 16 17 	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the test quadrats or where mean Ellenberg indices were predicted from observed soil data using the multiple regression equations. AUC statistics showed that predictions of habitat suitability based on mean Ellenberg values derived from the observed species composition resulted in 61% of model performance classified as excellent or good
 11 12 13 14 15 16 17 18 	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the test quadrats or where mean Ellenberg indices were predicted from observed soil data using the multiple regression equations. AUC statistics showed that predictions of habitat suitability based on mean Ellenberg values derived from the observed species composition resulted in 61% of model performance classified as excellent or good (Swets, 1988) but this dropped to only 22% when soil variables were used to predict
 11 12 13 14 15 16 17 18 19 	Of the 106 plant species models that were tested (13% of the higher plant models produced), results differed depending on whether niche models were solved using mean Ellenberg indices derived from the observed species composition in the test quadrats or where mean Ellenberg indices were predicted from observed soil data using the multiple regression equations. AUC statistics showed that predictions of habitat suitability based on mean Ellenberg values derived from the observed species composition resulted in 61% of model performance classified as excellent or good (Swets, 1988) but this dropped to only 22% when soil variables were used to predict mean Ellenberg values (Fig 3).

21 **Discussion**

22 Application and interpretation of static realised niche models

We have produced niche models for a large proportion of the British native higher plant flora and a substantial number of infrequent to common bryophyte species. While they constitute a useful, statistical description of the realised niche of

1 each species they should be applied cautiously since, as with any empirical model 2 based on observed spatial patterns, their formulation will partly reflect biases in the 3 training data. For example, our models are largely based on phytosociological data. 4 Such data are collected to census the total variation in plant communities across a 5 territory such that rare and common communities are all represented, however there is 6 a bias towards homogenous stands and this may under-represent less favourable loci 7 for some species thus overestimating the rate at which a species' habitat suitability 8 declines moving away from its optimum (Hirzel & Guisan 2002).

9 Just as spatial bias is likely, the choice of years of survey is limited by data 10 availability yet could influence niche description. The majority of the training datasets 11 depict species and environment relationships across Britain from the 1950s through to 12 the late 80s. Exploiting data from this time interval coupled with the exclusion of 13 most alien casuals and rare species should ensure that the modelled response surfaces 14 do not miss occupied niche space because of lack of range expansion or regional 15 extinction (Walker 2007). More importantly, many of the models may depict 16 equilibrium conditions that could increasingly break down as populations exhibit slow 17 delayed responses to habitat fragmentation (Lindborg & Erikkson 2004) and recent 18 climate change (Guisan & Theurillat 2000; Thuiller et al. 2005). Such problems 19 should not prevent the application and development of models based on extensive 20 databases of species occurrence but predictions ought to be treated as first 21 approximations from which deviations in newly observed data are to be expected. 22 Hence, interpretation of model inaccuracy ultimately increases understanding of the 23 constraints on each species occurrence in particular situations (Barry & Elith 2006; 24 Araújo et al 2005).

1	The development of any ecological model trades off local realism against
2	generality. Our niche models reflect the responses of plant species to principal abiotic
3	gradients across British habitats, expressed as species presence in relatively small
4	plots. At this scale, even though abiotic conditions are favourable, a species may be
5	absent because of dispersal history (Svenning & Skov 2004), current dispersal
6	limitation (Ozinga et al. 2005), the absence of appropriate gaps (Britton et al. 2000;
7	Rasran et al. 2007), cyclic response to pathogens (Strengbom et al. 2002; Terry et al.
8	2004) or other multi-scale constraints on the density of individuals across patchy
9	landscapes (Tyre et al. 2001; Liebold et al. 2004). An inability to predict such regional
10	and local influences is less of a problem if rescaled predicted probabilities are
11	interpreted as indices of abiotic suitability rather than predictions of probable presence
12	(Hirzel et al. 2001; Barry & Elith 2006).
13	

14 Combining climate and plot-scale abiotic conditions in niche models

15 Attempts to predict species responses to climate change often show that 16 models trained only on climate variables perform poorly when tested on independent 17 data. Results vary between species but highlight the importance of the conditioning 18 effects of other abiotic conditions related to land-use impacts, landscape structure and 19 natural variation in topography and soils below the resolution of gridded climate 20 datasets (Broennimann et al. 2007; Beale et al. 2008; Araújo et al. 2005). Hence, the 21 best models of biodiversity change are likely to include interactions and main effects 22 between these additional factors and climate variables. This is especially so across 23 densely populated and intensively farmed landscapes where restoration and 24 maintenance of habitats frequently relies on management intervention to control 25 successional processes, soil moisture and nutrient availability. The inclusion of

interaction terms between climate and local patch conditions also allows models to
 reflect shifts in optima and tolerances near to range edges.

3 In 57% of the British plant species niche models, at least one climate variable 4 explained significant additional variation in species presence. In some cases the 5 absence of climate variables in a species model will reflect weaker correlations 6 between climate and species simply because of the less precise spatial match between coarser scale climatic variables that cannot vary within a 5km² versus species 7 occupancy that could vary greatly between the plots within a 5km² (Trivedi et al. 8 9 2008). Clearly, inclusion of climate variables in species models also depends upon the 10 occurrence of clines in species occupancy that are correlated with climate gradients 11 across the domain sampled (Randin et al. 2006). For many British species, favourable 12 climate is encountered throughout the sampling domain so that modelling the climatic 13 range edge would require occupancy data from the near continent of Europe. Many of 14 the species without climate variables in their models are likely to fall into this 15 category.

16

17 Using mean Ellenberg values as explanatory variables; a necessary evil?

18 Our approach differed from previous attempts to explain mean Ellenberg 19 values in terms of measured data (e.g. Ertsen et al. 1998) in that multiple soil 20 variables were allowed to predict each mean Ellenberg index rather than a calibration 21 relationship sought from a hypothesised link between a single dependent soil variable 22 and a single mean Ellenberg value; for example attempting to model soil C/N in terms 23 of just mean Ellenberg N (fertility) or soil moisture in terms of just mean Ellenberg F 24 (wetness). Here the mean Ellenberg value was treated as the dependent variable which 25 we sought to model in terms of multiple explanatory soil variables.

1 While the calibration equations between soil data and mean Ellenberg indices 2 solve an important problem, they contribute uncertainty related to the fact that mean 3 Ellenberg scores are generally poorly explained by single soil variables. This leads to 4 high residual variation (Ertsen et al. 1998; van Dobben et al. 2004; Wamelink et al. 5 2002). Hill & Carey (1997) however, found that hay yield explained 83% of the 6 variation in mean Ellenberg N between the treatments of the Rothamsted Park Grass 7 experiment, thus Ellenberg N is better treated as an index of above-ground 8 productivity rather than available nitrogen. Since annual primary production is a 9 function of a complex of intercorrelated factors including soil macro-nutrient status, 10 soil moisture and seasonal climatic effects (Silvertown et al. 1994; Dunnett et al. 11 1998) it is reasonable to treat mean Ellenberg values as composite indices that ought 12 to be more fully explained by multiple factors. Using this approach we have produced 13 much higher r^2 values than reported for previous attempts to model single abiotic 14 measurements in terms of single mean Ellenberg values (Ertsen et al. 1998; van 15 Dobben et al. 2004). However, a feature of the resulting multiple regression models 16 for mean Ellenberg N and R is that the majority of the total explanatory power is 17 shared between contributing terms. That is, the amount of unique explanatory power 18 contributed by a single term reduces greatly when another term is present. The models 19 thus have a high degree of redundancy despite all terms contributing sufficient partial 20 explanatory power to justify inclusion in each final model. 21 Regarding the desirability of modelling species presence directly from soil

variables, it is notable that model testing on independent data indicated the much poorer performance of models solved by predicting mean Ellenberg indices from a minimum set of soil variables. This emphasises the extent to which mean Ellenberg indices are not well explained by the available soil variables yet the models based

1 solely on mean Ellenberg values calculated from the species composition itself 2 performed much better. This cannot have been due to circularity between modelled 3 species presence and mean Ellenberg value in the training data because explanatory 4 variables for the focal species' were always excluded from occupied plots during 5 model building despite the possibility that this could lead to substantial reductions in 6 information content in species poor plots. The high shared variance between measured 7 soil variables used to predict mean Ellenberg values reflects predictable relationships 8 between soil pH, soil moisture, %C and %N but their poor combined ability to predict 9 mean Ellenberg values must highlight the importance of other factors such as primary 10 productivity and other controls on local species composition including species pool 11 effects and the legacy of land-use history (Smart & Scott 2004). The expected link 12 between soil conditions and indicator values can also be weakened by managed 13 disturbance (Diekmann 2003). This may also explain the very poor performance of 14 the soil and mean Ellenberg regression models when applied to the test data since a 15 large proportion of these data sampled managed grasslands. It is also possible that the 16 estimation of volumetric soil moisture content from soil texture values reduced the 17 accuracy of the soil-derived predictions. Extended testing on a wider range of datasets 18 is clearly essential.

19

GLM as a tool for capturing niche properties - skewness, variable tolerances and
bimodality

Despite the recent demonstration of an array of more sophisticated modelling techniques (Guisan et al. 2006; Elith et al. 2006), GLM remains an attractive member of the family of species distribution modelling methods (eg. Manel et al. 1999; Bailey et al. 2002; Berg et al. 2004). Given its simplicity, GLM performs well in comparison

1 with other techniques (Ellith et al. 2006) and its lower propensity to overfit training 2 datasets appears to favour application in regions other than the one used to train the 3 models (Randin et al. 2006; Stockwell & Peterson, 2002 but also see Araújo et al. 4 2005). The most persuasive reason for using GLM was that interaction terms could be 5 explicitly modelled and the empirical realised niche for each species described using a 6 single, simple equation readily applicable to new situations, and amenable to the 7 derivation of *pmax* values and the optimum abiotic conditions associated with them 8 (Roy et al., 2000; Coudun & Gégout, 2006). Incorporation of interaction terms was 9 especially important because many plant species are known to exhibit conditional 10 responses to abiotic conditions on one gradient that depend upon their position along 11 another (Diekmann 2003; Smart et al. 2006; Pakeman et al. 2008). By modelling 12 quadratic and interaction terms along multiple gradients, we found that important 13 aspects of species' responses can be recovered, such as skewed optima, multiple 14 optima and varying tolerances (Minchin 1987; Huston 2002; Oksanen & Minchin 15 2002; Austin et al. 2006). The GLM models satisfactorily captured differences in 16 tolerance around species optima and therefore reflected varying degrees of specialist 17 versus generalist behaviour along different abiotic gradients (Fig 4 a-b). Skewed 18 optima with asymmetric response curves are typical of species associated with abiotic 19 extremes. These patterns are also recoverable by the GLM approach (Fig 4 c-e). 20 When applied to multiple gradients and their interactions, GLM can also capture bimodality even if 3rd or 4th order terms are absent. *Cirsium dissectum* for 21 22 example, has two apparent peaks of occurrence along the wetness (Ellenberg F) axis and these are expressed in a model with no 3rd or 4th order terms but with significant 23 24 interaction terms for Ellenberg R*Ellenberg N, Ellenberg F*canopy height and 25 Ellenberg F*Ellenberg N (Fig 4 f and Appendix 3). This species is associated with a

wider range of productivity in its somewhat drier situations but only with highly
 infertile conditions in its wettest habitats where the vegetation also tends to be shorter.
 The interaction between Ellenberg R and N appears to reflect the fact that its near
 neutral loci tend to be less productive than its higher pH situations.

5 Including multiple explanatory variables in combination with their interaction 6 terms can clearly improve the fit of each model along each individual gradient without 7 invoking additional parameters to capture multiple or skewed modes. Hence models 8 appear capable of capturing situations where the separation of different optima 9 depends upon the conditional influence of other gradients (Pakeman et al. 2008).

10

11 Prospects for modelling the impact of multiple drivers at small scales

12 Current global ecological change involves multiple human drivers and may 13 lead to novel environmental states (Steffen et al. 2004). These aspects emphasise the 14 importance of models that can be used to reliably explore future scenarios of change 15 as well as being used to attribute variation in historical observations to alternative 16 causes. However, scientific and policy interest still centres on the fate of many 17 individual species even though it is not feasible to build a process model for each. 18 Pragmatic approaches to the problem are required. For example, the impact of 19 multiple drivers on ecosystem functions such as primary production and nutrient 20 cycling, can be modelled dynamically by the best available process models and the 21 outputs then used to solve empirical niche models over a range of time steps thus 22 generating trajectories of change in habitat suitability for selected indicator species 23 including those known to be present in local species pools (van Dobben et al. 2004; 24 Wamelink et al. 2005b).

1	In terms of model application and future development, two conclusions can be
2	drawn from our model tests. The better performance of niche models solved using
3	mean indicator values derived from the observed species composition rather than
4	solved using soil variables indicates that factors in addition to soil measurements need
5	to be taken into account. However, soil conditions ought to be powerful predictors of
6	species presence. It is possible that ineffective sampling rather than low explanatory
7	power per se is responsible. For example many soil measurements rely on small
8	bulked samples taken at one point in time. Thus any one soil sample may poorly
9	represent the average spatial and temporal conditions experienced by the range of
10	species censussed in the plot and more effectively integrated by the mean Ellenberg
11	values (Schaffers & Sýkora 2000; Diekmann 2003; Hill & Carey 1997).
12	At present the niche models are most reliably applied at the vegetation patch
13	scale. Thus habitat suitability indices can be generated using observed species
14	composition and canopy height with or without local climate data. Such applications
15	could quantify changes in the appropriateness of current conditions for maintenance
16	or reintroduction of target species, or help evaluate the impact of observed or
17	expected changes in species composition on habitat suitability for possible invaders.
18	Linking the niche models to outputs from biogeochemical models is also required to
19	test scenarios of the impact of changing atmospheric nitrogen deposition on plant
20	assemblages across Europe (DeVries et al. in press). Since, soil variables such as pH,
21	%C and %N are outputs from these models, improvements in the accuracy of such
22	model chains will depend on better modelling of species presence in terms of
23	measured soil variables. This can be achieved in two ways; by either developing
24	better predictive models of mean indicator values, which we have shown can
25	effectively model presence of many British species, or by directly predicting species

1 presence in terms of soil and other data as a result of an extended campaign of new 2 environmental measurements at the places species grow. For many national territories 3 and their florae the second option is likely to be prohibitively costly. We suggest that 4 modelling via mean indicator values is a more efficient tactic because it is likely to be 5 less costly to improve the prediction of mean indicator values along each abiotic 6 gradient via new targeted soil sampling, than to implement species-specific campaigns 7 of new soil sampling to improve the predictive power of each separate species model. 8 Having established that mean indicator gradients provide effective explanatory power 9 for a large number of species, we suggest that new sampling should focus on a larger 10 number of soil factors sampled with greater temporal and spatial resolution along each 11 abiotic gradient.

12

13 Acknowledgements

14 We thank the following for advice Ian Strachan, Mike Ashmore, Mike Hornung, 15 Samantha Baker, Andrew Stott, Peter Costigan, Clare Whitfield, Keith Kirby, Richard 16 Smithers, Bob Bunce, Richard Brand-Hardy, Geoff Kirby, Philip Corney, Simon 17 Bareham, Clive Walmsley, John Rodwell, Wieger Wamelink, Han van Dobben, Beth 18 Purse, Dan Chapman and Sarah Honour. Three referees made valuable suggestions on 19 a previous draft. Financial support for part of this work was provided by the 20 Department of Environment, Food and Rural Affairs and the UK Natural 21 Environment Research Council. 22

23 Supplementary material

24 Appendix 1 - Mathematical estimation of species optima (*pmax*) from fitted logistic

25 regressions with multiple gradients, quadratic and interaction terms

1	
2	Appendix 2 - Empirical estimation of species optima (pmax) from multiple logistic
3	regressions equations
4	
5	Appendix 3 – GLM model equations for 1130 British plant species
6	
7	Appendix 4 – GLM model equations for 639 species incorporating abiotic patch-scale
8	explanatory variables and three climate variables at 5km ² scale.
9	
10	Appendix 5 – Graphs and notes on patterns of commonness and rarity among
11	modelled species compared to the whole of the UK native higher and lower plant
12	flora.

1	References
2	Anon. 1988. Agricultural Land Classification of England and Wales. Revised
3	Guidelines and Criteria for Grading the Quality of Agricultural Land. MAFF
4	Publications, Alnwick, UK.
5	
6	Araújo, M.B. & New, M. 2006. Ensemble forecasting of species distributions. Trends
7	in Ecology and Evolution 22:42-47.
8	
9	Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. 2005. Validation of species-
10	climate impact models under climate change. Global Change Biology 11: 1504-1513.
11	
12	Austin, M.P., Belbin, L., Meyers, J.A., Doherty, M.D. & Luoto, M. 2006. Evaluation
13	of statistical models used for predicting plant species distributions: role of artificial
14	data and theory. Ecological Modelling 199: 197-216.
15	
16	Bailey, S-A., Haines-Young, R.H. & Watkins, C. 2002. Species presence in
17	fragmented landscapes: modelling of species requirements at the national level.
18	Biological Conservation 108: 307-316.
19	
20	Bakkenes, M., Alkemade, J.R.M., Ihle, F., Leemans, R. & Latour, J.B. 2002.
21	Assessing effects of forecasted climate change on the diversity and distribution of
22	European higher plants for 2050. Global Change Biology 8: 390-407.
23	
24	Barry, S. & Elith, J. 2006. Error and uncertainty in habitat models. Journal of Applied
25	<i>Ecology</i> 43: 413-423.

1	
2	Beale, C.M., Lennon, J.J. & Gimona, A. 2008. Opening the climate envelope reveals
3	no macroscale associations with climate in European birds. Proceedings of the
4	National Academy of Sciences of the USA 105: 14908-14912.
5	
6	Berg, Å, Gärdenfors, U. & von Poschwitz, T. 2004. Logistic regression models for
7	predicting occurrence of terrestrial molluscs in southern Sweden - importance of
8	environmental data quality and model complexity. Ecography 27:83-93.
9	
10	Bio, A.M.F. 2000. Does vegetation suit our models? Data and model assumptions
11	and the assessment of species distribution in space. PhD thesis. Utrecht, Netherlands.
12	195 pp.
13	
14	Black, HI.J., Garnett, J.S., Ainsworth, G., Coward, P.A., Creamer, R., Ellwood, S.,
15	Horne, J., Hornung, M., Kennedy, V.H., Monson, F., Raine, L., Osborn, D., Parekh,
16	N.R., Parrington, J., Poskitt, J.M., Potter, E., Reeves, N., Rowland, A.P., Self, P.
17	Turner, S., Watkins, J., Woods, C. & Wright, J. 2001. MASQ: Monitoring And
18	Assessing Soil Quality In Great Britain. Countryside Survey Module 6: Soils and
19	Pollution. R&D Technical Report E1-063/TR. Environment Agency, London, UK.
20	185 pp.
21	
22	Borcard, D., Legendre, P. & Drapeau, P. 1992. Partialling out the spatial component
23	of ecological variation. <i>Ecology</i> 73: 1045–1055.
24	

1	Braunisch, V., Bollman, K., Graf, R.F. & Hirzel, A.H. 2008. Living on the edge –
2	Modelling habitat suitability for species at the edge of their fundamental niche.
3	Ecological Modelling 214:, 153-167.
4	
5	Britton, A.J., Carey, P.D., Pakeman, R.J. & Marrs, R.H. 2000. A comparison of
6	regeneration dynamics following gap creation at two geographically contrasting
7	heathland sites. Journal of Applied Ecology 37: 832-844.
8	
9	Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A. T. &
10	Guisan, A. 2007. Evidence of climatic niche shift during biological invasion. Ecology
11	Letters 10: 701-709.
12	
13	Clark, C.M. & Tilman, D. 2008. Loss of plant species after chronic low-level nitrogen
14	deposition to prairie grasslands. Nature 451:712-715.
15	
16	Corney, P.M., Le Duc, M.G., Smart, S.M., Kirby, K.J., Bunce, R.G.H. & Marrs, R.H.
17	2006. Relationships between the species composition of forest field-layer vegetation
18	and environmental drivers assessed using a national survey. Journal of Ecology 94:
19	383-401
20	
21	Coudun, C. & Gégout, J.C. 2006. The derivation of species response curves with
22	Gaussian logistic regression is sensitive to sampling intensity and curve
23	characteristics. Ecological Modelling 199: 164-175.
24	
25	Crawley, M.J. 2007. The R Book. John Wiley & sons, Chichester, UK, p 327.

1	

2	Critchley, C.N.R., Chambers, B.J., Fowbert, J.A., Bhogal, A., Rose, S.C. &
3	Sanderson, R.A. 2002. Plant species richness, functional type and soil properties of
4	grasslands and allied vegetation in English Environmentally Sensitive Areas. Grass &
5	Forage Science 57, 82-92.
6	
7	De Vries, W., Wamelink, W., Van Dobben, H., Kros, H., Reinds, G.J., Mol-Dijkstra,
8	J., Smart, S., Evans, C., Rowe, E., Belyazid, S., Sverdrup, H., Van Hinsberg, A.,
9	Posch, M., Hettelingh, JP., Spranger, T., & Bobbink, R. In press. Use of dynamic
10	soil-vegetation models to assess impacts of nitrogen deposition on plant species
11	composition and to estimate critical loads: an overview. Ecological Applications.
12	
13	Diekmann, M. 2003. Species indicator values as an important tool in applied plant
14	ecology - a review. Basic and Applied Ecology 4: 493-506.
15	
16	Diniz-Filho, J.A.F., Bini, L.M. & Hawkins, B.A. 2003. Spatial autocorrelation and red
17	herrings in geographical ecology. Global Ecology and Biogeography 12:53-64.
18	
19	Dodd, M.E., Silvertown, J., McConway, K., Potts, J. & Crawley, M.J. 1994. Stability
20	in the plant communities of the Park Grass experiment: the relationships between
21	species richness, soil pH and biomass variability. Philosophical Transactions of the
22	Royal Society London. Series B 346: 185-193.
23	
24	Dormann, C.F. 2007. Effects of incorporating spatial autocorrelation into the analysis
25	of species distribution data. Global Ecology and Biogeography 16: 129-138.

1	
2	Dunnett, N.P., Willis, A.J., Hunt, R. & Grime, J.P. 1998. A 38-year study of relations
3	between weather and vegetation dynamics in road verges near Bibury,
4	Gloucestershire. Journal of Ecology 86:, 610-623.
5	
6	Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans,
7	R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle,
8	B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson,
9	A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J.,
10	Williams, S., Wisz, M.S. & Zimmermann, N.E. 2006. Novel methods improve
11	prediction of species distributions from occurrence data. <i>Ecography</i> 29: 129-151.
12	
13	Ellenberg, H., Weber, H.E., Dull, R., Wirth, V., Werner, W. & Paulissen, D. 1991.
14	Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1-248.
15	
16	Emmett, B.A., Beier, B., Estiarte, M., Tietema, A., Kristensen, H.L., Williams, D.,
17	Penuelas, J., Schmidt, I. & Sowerby, A. 2004. The response of soil processes to
18	climate change: results from manipulation studies of shrublands across an
19	environmental gradient. Ecosystems 7: 625-637.
20	
21	Ertsen, A.C.D., Alkemade, J.R.M. & Wassen, M.J. 1998. Calibrating Ellenberg
22	indicator values for moisture, acidity, nutrient availability and salinity in the
23	Netherlands. Plant Ecology 135: 113-124.

1	Geider, R.J., Delucia, E.H., Falkowski, P.G., Finzi, A.C., Grime, J.P., Grace, J., Kana,
2	T.M., La Roche, J., Long, S.P., Osborne, B.A., Platt, T., Prentice, I.C., Raven, J.A.,
3	Schlesinger, W.H., Smetacek, V., Stuart, V., Sathyendranath, S., Thomas, R.B.,
4	Vogelmann, T.C., Williams, P. & Woodward, F.I. 2001. Primary productivity of
5	planet earth: biological determinants and physical constraints in terrestrial and aquatic
6	systems. Global Change Biology 7: 849-882.
7	
8	Grime, J.P., Hodgson, J.G., Hunt, R., Thompson, K. 1995. The Electronic
9	Comparative Plant Ecology, Chapman & Hall, London, UK.
10	
11	Guisan, A. & Theurillat, J-P. 2000. Equilibrium modelling of alpine plant distribution:
12	how far can we go. Phytocoenologia 30, 353-384.
13	
14	Guisan, A., Thomas, C., Edwards, C. & Hastie, T. 2002. Generalized linear and
15	generalized additive models in studies of species distributions: setting the scene.
16	Ecological Modelling 157: 89-100.
17	
18	Guisan, A., Lehmann, A., Ferrier, S., Austin, M.P., Overton, J.M.C., Aspinall, R. &
19	Hastie, T. 2006. Making better biogeographical predictions of species' distributions.
20	Journal of Applied Ecology 43: 386-392.
21	
22	Hawkins, B.A., Diniz-Filho, J.A.F., Bini, L.M., De Marco, P. & Blackburn, T.M.
23	2007. Red herring revisited: spatial autocorrelation and parameter estimation in
24	geographical ecology. <i>Ecography</i> 30: 375-384.
25	

1	Hill, M.O. & Carey, P.D. 1997. Prediction of yield in the Rothamsted Park Grass
2	Experiment by Ellenberg indicator values. Journal of Vegetation Science 8: 579-586.
3	
4	Hill, M.O., Mountford, J.O., Roy, D.B. & Bunce, R.G.H. 1999. Ellenbergs' indicator
5	values for British plants. ECOFACT Volume 2, Technical Annex. Department of the
6	Environment, Transport and the Regions, London, UK. 47pp.
7	
8	Hill, M.O., Roy, D.B., Mountford, J.O. & Bunce, R.G.H. 2000. Extending
9	Ellenbergs' indicator values to a new area: an algorithmic approach. Journal of
10	Applied Ecology 37: 3-15.
11	
12	Hill, M.O., Preston, C.D. & Roy, D.B. 2004. PLANTATT Attributes of British and
13	Irish Plants: Status, Size, Life History, Geography and Habitats. Centre for Ecology
14	and Hydrology, Monkswood, Abbots Ripton, Huntingdon, UK. 78pp.
15	
16	Hill, M.O., Preston, C.D., Bosanquet, S.D.S. & Roy, D.B. 2007. BRYOATT Attributes
17	of British and Irish Mosses, Liverworts and Hornworts. Centre for Ecology and
18	Hydrology, Monkswood, Abbots Ripton, Huntingdon, UK. 36pp.
19	
20	Hirzel, A., Helfer, V. & Me´tral, F. 2001. Assessing habitat suitability models with a
21	virtual species. Ecological Modelling 145: 111-121.
22	
23	Hirzel, A. & Guisan, A. 2002. Which is the optimal sampling strategy for habitat
24	suitability modelling. Ecological Modelling 157: 331-341
25	

1	Hornung, M.H. 1996. The Key Habitats Survey of Britain. Final report to DEFRA.
2	Centre for Ecology and Hydrology, Lancaster, UK.
3	
4	Kirby, K.J., Smart, S.M., Black, H.I.J., Bunce, R.G.H., Corney, P.M. & Smithers, R.J.
5	2005. Long-term ecological change in British woodland (1971-2001). English Nature
6	Research report 653. Peterborough, UK. 137pp.
7	
8	Lájer, K. 2007. Statistical tests as inappropriate tools for data analysis performed on
9	non-random samples of plant communities. Folia Geobotanica 42: 115-122.
10	
11	Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes,
12	M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A. 2004.
13	The metacommunity concept: a framework for multi-scale community ecology
14	Ecology Letters 7, 601–613.
15	
16	Lindborg R. & Eriksson, O. 2004. Historical landscape connectivity affects present
17	plant species diversity. Ecology 85: 1840-1845.
18	
19	Little, R.C., Milliken, G.A., Stroup, W.W. & Wolfinger, R.D. 2000. SAS System for
20	Mixed Models. 4 th edn. SAS Institute Inc. Cary, North Carolina, USA, pp.437-432.
21	
22	Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. 2005. Selecting thresholds of
23	occurrence in the prediction of species distributions. <i>Ecography</i> 28: 385-393.

1	Lobo, J.M., Jiménez-Valverde, A. & Real, R. 2008. AUC: a misleading measure of
2	the performance of predictive distribution models. Global Ecology and Biogeography
3	17: 145-151.
4	
5	Luoto, M., Virkkala, R. & Heikkinen, R.K. 2007. The role of land cover in
6	bioclimatic models depends on spatial resolution. Global Ecology and Biogeography
7	16: 34-42.
8	
9	Manel S., Dias, J.M., Buckton, S.T. & Ormerod, S.J. 1999. Alternative methods for
10	predicting species distribution: an illustration with Himalayan birds. Journal of
11	Applied Ecology 36: 734-747.
12	
13	Manel, S., Williams, H. C. & Ormerod, S. J. 2001. Evaluating presences-absence
14	models in ecology: the need to account for prevalence. Journal of Applied Ecology
15	38:921-931.
16	
17	Manning, P., Putwain, P.D. & Webb, N.R. 2005. Formulating a general statistical
18	model for Betula spp. invasion of lowland heath ecosystems. Journal of Applied
19	<i>Ecology</i> 42: 1031-1041.
20	
21	Minchin, P.R. 1987. Simulation of multidimensional community patterns: towards a
22	comprehensive model. Vegetatio 71:145–156.
23	
24	Oksanen, J. & Minchin, P.R. 2002. Community theory revisited: what shape are
25	species responses along ecological gradients? Ecological Modelling 157:119-129.

1	
2	Ozinga, W.A., Schaminee, J.H.J, Bekker, R.M., Poschlod, P., Tackenberg, O.,
3	Bakker, J. & van Groenandael, J.M. 2005. Predictability of plant species composition
4	from environmental conditions is constrained by dispersal limitation. Oikos 108: 555-
5	561.
6	
7	Pakeman, R.J., Reid, C.L., Lennon, J.J. & Kent, M. 2008. Possible interactions
8	between environmental factors in determining species optima. Journal of Vegetation
9	Science 19:201-208.
10	
11	Preston, C.D. 2007. Which vascular plants are foundat the northern or southern edges
12	of their European range in the British Isles? Watsonia 26: 253-269.
13	
14	Preston, C.D. & Hill, M.O. 1997. The geographical relationships of British and Irish
15	vascular plants. Botanical Journal of the Linean Society 124: 1-120.
16	
17	Randin, C.F., Dirnbock, T., Dullinger, S., Zimmerman, N.E., Zappa, M. & Guisan, A.
18	2006. Are niche-based species distribution models transferable in space? Journal of
19	Biogeography 33: 1689-1703.
20	
21	Rasran, L, Vogt, K. & Jensen, K. 2007. Effects of litter removal and mowing on
22	germination and establishment of two fen-grassland species along a productivity
23	gradient. Folia Geobotanica 42: 271-288.

1	Rodwell, J.S. 1991. Woodland & Scrub. British Plant Communities. Vol 1. Cambridge
2	University Press, Cambridge, UK.
3	
4	Roy, D.B., Hill, M.O., Rothery, P. & Bunce, R.G.H. 2000. Ecological indicator values
5	of British species: an application of Gaussian logistic regression. Annales Botanisk
6	Fennici 37:219-226.
7	
8	Sala, EO., Chapin, F.S., Armesto, J.J., Berlow, E, Bloomfield, J., Dirzo, R, Huber-
9	Sanwald, E., Huenneke, LF., Jackson, RB., Kinzig, A, Leemans, R, Lodge, D.M.,
10	Mooney, HA., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M. &
11	Wall, D.H. 2000. Biodiversity - Global scenarios for the year 2100. Science 287:
12	1770-1774.
13	
14	SAS Institute Inc. 1999a. SAS Macro Language: Reference, Version 8. Cary, NC:
15	SAS Institute Inc., USA, 301 pp.
16	
17	SAS Institute Inc. 1999b. SAS/STAT User's Guide Version 8. Cary, NC: SAS Institute
18	Inc., USA. 3864 pp.
19	
20	Satterthwaite, F.E. 1946. An approximate distribution of estimates of variance
21	components. <i>Biometrics</i> 2:110-114.
22	
23	Schaffers, A.P. & Sýkora, K.V. 2000. Reliability of Ellenberg indicator values for
24	moisture, nitrogen and soil reaction: comparison with field measurements. Journal of
25	Vegetation Science 11: 225-244.

1	
2	Silvertown, J., Dodd, M.E., McConway, K., Potts, J. & Crawley, M. 1994. Rainfall,
3	biomass variation and community composition in the Park Grass experiment. Ecology
4	75: 2430-2437.
5	
6	Singer, J.D. 1998. Using SAS PROC MIXED to fit multi-level models, hierarchical
7	models and individual growth models. Journal of Educational and Behavioural
8	<i>Statistics</i> 24: 323-355.
9	
10	Smart, S.M., Clarke, R.T., van de Poll, H.M., Robertson, E.J., Shield, E.R., Bunce,
11	R.G.H. & Maskell, L.C. 2003. National-scale vegetation change across Britain; an
12	analysis of sample-based surveillance data from the Countryside Surveys of 1990 and
13	1998. Journal of Environmental Management 67: 239-254.
14	
15	Smart, S.M., Scott, W.A. 2004. Bias in Ellenberg indicator values – problems with
16	detection of the effect of vegetation type. Journal of Vegetation Science 15: 843-846.
17	
18	Smart, S.M., Le Duc, M., Marrs, R.H., Rossall, M.J., Bunce, R.G.H., Thompson, K.
19	& Firbank, L.G. 2006. Spatial relationships between intensive land cover and residual
20	plant species diversity in temperate, farmed landscapes. Journal of Applied Ecology
21	43: 1128-1137.
22	
23	Steffen, W., Sanderson, A., Tyson, P.D., Jager, J., Matson, P.A., Moore III, B.,

24 Oldfield, F., Richardson, K., Schellnhuber, H.J., Turner, B.L., Wasson, R.J. 2004.

1	Global change and the earth system: a planet under pressure. Springer-Verlag,
2	Berlin, Germany. 332 pp.
3	
4	Stevens, C.J., Dise, N.B., Mountford, J.O. & Gowing, D.J. 2004. Impacts of nitrogen
5	deposition on the species richness of grasslands. Science 303: 1876-1879.
6	
7	Stockwell, D.R.B. & Peterson, A.T. 2002. Effects of sample size on accuracy of
8	species distribution models. Ecological Modelling 148: 1-13.
9	
10	Strengbom, J., Nordin, A, Nasholm, T., Ericson, L. 2002. Parasitic fungus mediates
11	change in nitrogen-exposed boreal forest vegetation. Journal of Ecology 90: 61-67.
12	
13	Svenning, JC. & Skov, F. 2004. Limited filling of the potential range in European
14	tree species. Ecology Letters 7: 565-573.
15	
16	Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science 240, 1285-
17	1293.
18	
19	Terry, A.C., Ashmore, M.R., Power, S.A., Allchin, E.A. & Heil, G.W. 2004.
20	Modelling the impacts of atmospheric nitrogen deposition on Calluna-dominated
21	ecosystems in the UK. Journal of Applied Ecology 41: 897-909.
22	
23	Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. & Prentice, I.C. 2005. Climate
24	change threats to plant diversity in Europe. Proceedings of the National Academy of
25	Sciences of the USA 102: 8245-8250.

1	
2	Trivedi, M.R., Berry, P.M., Morecroft, M.D. & Dawson, T.P. 2008. Spatial scale
3	affects bioclimate model projections of climate change impacts on mountain plants.
4	Global Change Biology 14: 1089-1103.
5	
6	Tyre, A.J., Possingham, H.P. & Lindenmayer, D.B. 2001. Matching observed pattern
7	with ecological process: can territory occupancy provide information about life
8	history parameters? Ecological Applications 11: 1722-1738.
9	
10	UK Biodiversity Steering Group. 1995. Biodiversity: The UK Steering Group Report
11	– Volume I: Meeting the Rio Challenge. HMSO, London, UK. 93 pp.
12	
13	Van Dobben, H.F., Schouwenberg, E.P.A.G., Mol, J.P., Wieggers, H.J.J., Jansen,
14	M.J.W., Kros, J. & de Vries, W. 2004. Simulation of critical loads for nitrogen for
15	terrestrial plant communities in the Netherlands. Alterra-rapport 953. Wageningen,
16	Netherlands. 84 pp.
17	
18	Wamelink, G.W.W., Joosten, V., van Dobben, H.F. & Berendse, F. 2002. Validity of
19	Ellenberg indicator values judged from physico-chemical measurements. Journal of
20	Vegetation Science 13: 269-278.
21	
22	Wamelink, G.W.W., Ter Braak, C.J.F. & Van Dobben, H.F. 2003. Changes in large-
23	scale patterns of plant biodiversity predicted from environmental economic scenarios.
24	Landscape Ecology 18:513-527.
25	

1	Wamelink, G.W.W., Goedhart, P.W., van Dobben, H.F. & Berendse, F. 2005a. Plant
2	species as predictors of soil pH: replacing expert judgement with measurements.
3	Journal of Vegetation Science 16:461-470.
4	
5	Wamelink, G.W.W., de Jong, J.J., van Dobben, H.F. & Van Wijk, M.N. 2005b.
6	Additional costs of nature management caused by deposition. Ecological Economics
7	52:437-451.
8	
9	Walker, K.J. 2007. The last thirty five years: recent changes in the flora of the British

10 Isles. *Watsonia* 26: 291-302.

1 Table 1. Plant species occurrence data used to train British niche models for higher

- 2 and lower plants.
- 3

Survey source	Sample size	Sampling method	Number of	Date of
			samples	collection
National Vegetation	$4m^2$ to $250m^2$	Phytosociological –	31266	1950 - 1980
Classification		targeted		
(Rodwell, 1991 et		homogenous stands		
seq)		to census full range		
		of plant community		
		variation across		
		Britain		
The Key Habitats	$4m^2$	Random within a	548	1992
surveys of Britain		random selection of		
(Hornung, 1996)		1km squares		
		stratified by three		
		landscape GIS		
		masks for upland,		
		calcareous		
		grassland and		
		lowland heathland		
		ecosystems		
Broadleaved	200m ²	16 plots at random	1648	1971
woodland survey of		within each of 103		
Britain (Kirby et		representative sites		

	al., 2005; Corney et		Britain		
	al., 2006)				
	Countryside Survey	4 to 200m ²	Random plots	7221	1998/'99
	of Great Britain		within a random		
	(Smart et al., 2003)		selection of 569		
			1km squares across		
			Britain stratified by		
			ITE Land Class		
1					

- 1 Table 2. Calibration equations that predict values of mean unweighted Ellenberg
- 2 values from four soil variables; MC (% soil moisture content), soil pH, C (% organic
- 3 carbon) and N (%organic nitrogen). See text for further details.
- 4

Unweighted mean	%	Equation
Ellenberg score	variance	
	explained	
F (wetness)	70.1	=ln ((MC/(100-MC))+3.27)/0.55
R (substrate pH)	77.9	=0.5293-0.02503(MC)+1.665(pH)-0.1061(pH ²)-
		0.00566(C)
N (substrate fertility)	78.2	$=\exp(0.7751-0.00006(MC)-0.00009(MC^{2})-$
		0.01475(C)+ 0.000099(C ²)+0.2639(pH)-
		0.01684(pH ²)+0.1908(N))

- 1 Figure 1. Flow diagram showing model building (B) and testing (T) steps. Species
- 2 presence was measured as occupancy in plots that ranged from 2 to 200m². Climate
- 3 variables were based on interpolated data for the 5km² containing each plot. Other
- 4 explanatory variables were measured at the plot scale.

- 1 Figure 2. Partitioning observed variation in mean Ellenberg indices among
- 2 explanatory variables selected for inclusion in the best minimum adequate model for
- 3 each index. a. Mean Ellenberg R, b. Mean Ellenberg N. MC = % soil moisture, C = %
- 4 organic carbon, N = % organic nitrogen. Marginal=variation uniquely explained by
- 5 each variable with no other variables present. Partial=variation uniquely explained
- 6 when other variables were included.

1	Figure 3. AUC results for GLM model predictions of the presence of 106 higher
2	plant species in independent vegetation plot data from English Environmentally
3	Sensitive Areas. Models were solved using cover-weighted canopy height plus either
4	mean Ellenberg values calculated from the observed species composition of each plot
5	or using mean Ellenberg values predicted from observed soil data for each plot
6	(n=244). AUC values classified according to the guidance in Swets (1988); excellent
7	>=0.9, good 0.8 to 0.9, , poor 0.7 to 0.8, fail <0.7 .

1 Figure 4. Examples showing the fit of species models to the GB training dataset. Open 2 diamonds and the solid line (moving average) show the model prediction of habitat 3 suitability along each gradient. GLM models were solved at intervals of 0.2 Ellenberg 4 index units along the x-axis. Terms for other abiotic gradients were then solved in 5 each interval using the average values for the other explanatory variables in plots 6 occupied by the species concerned within each interval. In each graph, probabilities 7 were rescaled by the *pmax* value for each species. Black squares and the dashed line 8 (moving average) indicate the proportion of plots in each interval actually occupied 9 by the species. 10

- FIG 4. 2 3
- a.

c.

Cirsium dissectum

