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Abstract 15 

Question: Can useful realised niche models be constructed for British plant species 16 

using climate, canopy height and mean Ellenberg indices as explanatory variables?   17 

Location: Great Britain. 18 

Methods: General Linear Models were constructed using occurrence data covering all 19 

major natural and semi-natural vegetation types (n=40683 quadrat samples). Paired 20 

species and soil records were only available for 4% of the training data (n=1033) so 21 

modelling was carried out in two stages. First, multiple regression was used to express 22 

mean Ellenberg values for moisture, pH and fertility, in terms of direct soil 23 

measurements. Next, species presence/absence was modelled using mean indicator 24 

scores, cover-weighted canopy height, three climate variables and interactions 25 
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between these factors but correcting for the presence of each target species in training 1 

plots to avoid circularity. 2 

Results: 803 higher plants and 327 bryophyte were modelled. 13% of the niche 3 

models for higher plants were tested against an independent survey dataset not used to 4 

build the models. Models performed better when predictions were based only on 5 

indices derived from the species composition of each plot rather than measured soil 6 

variables. This reflects the high variation in vegetation indices tha t was not explained 7 

by the measured soil variables.  8 

Conclusions : The models should be used to estimate expected habitat suitability rather 9 

to predict species presence. Scenario testing at large scales is also possible using input 10 

from process models, yet least uncertainty attaches to their use as risk assessment and 11 

monitoring tools on nature reserves because they can be solved using mean 12 

environmental indicators calculated from the existing species composition, with or 13 

without climate data. 14 

 15 
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 19 

Introduction 20 

In human dominated regions, changes in ecosystem function are increasingly 21 

recognised as being caused by multiple drivers such as land management, air pollution 22 

and climate change (Sala et al. 2000). Unravelling the relative contributions of these 23 

drivers, environmental covariates and the ir interactions relies on several approaches 24 

including experiments (Clark & Tilman 2008), retrospective signal attribution studies 25 



 4 

(e.g. Stevens et al. 2004; Smart et al. 2006) and prospective modelling (Wamelink et 1 

al. 2003). 2 

Although the development of process-based models is important, species and 3 

habitat conservation policies require the assessment of impacts on a large number of 4 

individual species (van Dobben et al. 2004; UK Biodiversity Steering Group 1995). 5 

However, developing population dynamic models for each species of concern is not 6 

possible or at least would require unrealistic resourcing.  7 

In northern Europe, the existence of large national species occurrence databases 8 

provide opportunities for empirical, data- intensive modelling of species’ realised 9 

niches along climatic and other abiotic gradients (eg. Guisan et al. 2002; Bakkenes et 10 

al. 2002; Randin et al. 2006; Araújo & New 2006). We used multiple logistic 11 

regression to develop General Linear Models (GLM) of the realised niche for British 12 

higher and lower plants. These models quantified the response of each species to four 13 

abiotic gradients; soil fertility, soil pH, soil moisture and successional status as 14 

inferred from mean Ellenberg fertility (N), soil reaction (R) and moisture (F) values 15 

and cover-weighted canopy height respectively. These four gradients reflect the major 16 

constraints on biomass production for plants, namely light, water and nutrients, and 17 

therefore the principal axes along which niches differentiate (Geider et al. 2001). 18 

Since the distributions of many British species are known to be climatically 19 

constrained (Preston & Hill 1997; Preston 2007) three climate variables were also 20 

included.  21 

Niche models were produced for as many higher and lower plant species as 22 

possible by combining botanical databases representing the abiotic preferences of 23 

species in Britain across all major natural, semi-natural and artificial plant 24 

assemblages. Since soil measurements were only available for a subset of the total 25 
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training dataset mean unweighted Ellenberg indices (Ellenberg et al. 1991) were used 1 

as explanatory variables in addition to climate and canopy height, but translation 2 

between soil data and mean Ellenberg indices was achieved by constructing multiple 3 

regression models predicting the latter in terms of the former. Ideally, Ellenberg 4 

values would be completely replaced by direct soil measurements (e.g. Wamelink et 5 

al. 2005a) but the cost of pairing soil data with plant species occurrence for most of a 6 

national flora is usually prohibitive. Thus, in Britain, sufficient paired measurements 7 

of soil properties and vegetation are only available for a limited number of plots and 8 

species but all major abiotic gradients are covered. Using this subset, multiple 9 

regression equations were constructed to enable the mean unweighted Ellenberg 10 

indices, used as explanatory variables in the niche models, to be expressed in terms of 11 

a range of measured soil variables. This calibration step allows mean Ellenberg values 12 

rather than measured soil properties to be used as explanatory variables in turn 13 

allowing the complete training dataset of quadrat samples to be used in the 14 

construction of niche models. The benefits of this approach are two-fold: First, 15 

models can be generated for many more species than just those present in plots with 16 

soil data, and second,  predictions of habitat suitability for each modelled species can 17 

be readily solved using just the species composition of the vegetation, with or without 18 

climate data. The disadvantage is that each species’ response to measured gradients of 19 

soil conditions can only be expressed indirectly via the intermediate multiple 20 

regression models linking mean Ellenberg values to soil variables. We sought to test 21 

whether this disadvantage was outweighed by the ability to produce models for a large 22 

number of species and where each model could be readily solved at small scales using 23 

minimal environmental measurements.    24 

In summary our objectives were as follows (see Fig 1): 25 
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1. Build simple realised niche models for as many higher and lower plants as 1 

possible in the British flora, incorporating small-scale abiotic (B1) and larger-2 

scale climate variables (B2). 3 

2. In the absence of soil measurements from all model training plots, use mean 4 

Ellenberg indicator values as explanatory variables for soil pH, soil moisture 5 

and fertility (B1). 6 

3. Based on a smaller random subset of plots, derive multiple regression 7 

equations that explain mean Ellenberg values in terms of measured soil data 8 

(B3). 9 

4. Decompose the variation in mean Ellenberg values explained by measured soil 10 

data into unique and overlapping components (B3). 11 

5. Test niche models aga inst independent observations (T1,T2). 12 

6. Compare the performance of models solved using mean Ellenberg values 13 

based on observed species composition (T1) versus mean Ellenberg values 14 

predicted from measured soil data (T2).   15 

   16 

Methods  17 

 18 

Selection of botanical data  19 

Quadrat data were used from four large-scale botanical surveys of the plant 20 

communities of Great Britain (England, Wales and Scotland) (Table 1). The largest 21 

dataset was that used to construct the national synoptic catalogue of plant 22 

communities known as the National Vegetation Classification (NVC) (Rodwell 1991). 23 

These data were sampled using a phytosociological approach and contributed by far 24 

the largest number of quadrat samples. The targeting of homogenous stands of 25 
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vegetation could however, constitute a bias toward sampling the regions close to a 1 

species’ abiotic optimum whilst under-sampling sub-optimal conditions associated 2 

with ecotones or heterogenous, disturbed vegetation (Lájer 2007; Braunisch et al. 3 

2008). Therefore three other vegetation survey datasets were also included. These 4 

were all based on stratified, random sampling within landscapes or habitat type (Table 5 

1).  6 

 7 

Niche model construction  8 

Each GLM model used presence/absence data for each plant species in each 9 

plot as the response variable. Unweighted mean Ellenberg values were calculated for 10 

each plot based on the list of values recently updated for the British flora (Hill et al. 11 

1999; Hill et al. 2000). Mean cover-weighted canopy height was used as an index of 12 

the disturbance/successional status of the vegetation in each quadrat. Average canopy 13 

height for each species was based on values taken from Grime et al. (1995) and Stace 14 

(1997). Bryophytes were excluded from these calculations. To avoid circularity, 15 

during model construction, indicator values of the species being modelled were 16 

excluded from calculation of the mean indices used as explanatory variables.  17 

Variable selection was carried out by first testing the explanatory power of 18 

each variable separately (both linear and quadratic models) and then entering all those 19 

that were significant, and their interactions, into a stepwise elimination procedure 20 

(proc logistic; SAS Institute, 1999b). Significance was tested using likelihood ratio 21 

tests (Bio 2000). All analysis and data manipulation steps were carried out using SAS 22 

procedures and the SAS macro language (SAS Institute, 1999a).   23 

After final models were selected a repeat analysis was carried out to quantify 24 

the influence of correlation between abiotic variables and spatial structure in the 25 
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training data (Dormann 2007). Given the debate that still surrounds the relative 1 

importance of spatial autocorrelation in species distribution modelling (Hawkins et al. 2 

2007; Diniz-Filho et al. 2003), we adopted a simple, precautionary approach to the 3 

problem: To estimate the importance of spatial correlation with abiotic variables, 4 

spatial location was quantified by seven variables for each quadrat in the training data 5 

(x and y coordinates and their squared terms and interactions) (Borcard et al. 1998; 6 

Corney et al. 2006). These terms were forced into each species model prior to 7 

backward selection of those significant variables that already formed the basis of each 8 

species model. This approach ensured that variance in the species presence data that 9 

could be explained by spatial trends was removed before re-testing combinations of 10 

abiotic variables. Abiotic explanatory variables that were no longer significant after 11 

having first fitted spatial terms were then highlighted in the final table of model 12 

equations (Appendix 3).  13 

A second subset of models were also produced where, in addition to the three 14 

mean Ellenberg indices and cover-weighted canopy height, three climate variables 15 

were also available for  stepwise selection. These were long-term annual averages 16 

(1961-1999) for maximum July temperature, minimum January temperature and 17 

precipitation for the 5km2 containing each quadrat location. Data were extracted from 18 

the UK Climate Change Impacts Program database at 19 

www.metoffice.gov.uk/climatechange/science/monitoring/ukcip.html. Spatial 20 

autocorrelation analyses were not carried out on this subset of models because climate 21 

gradients across Britain are already known to be strongly spatially structured (Corney 22 

et al. 2006).          23 

 24 

Explaining mean Ellenberg values with soil variables 25 
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Multiple regression was used to model mean Ellenberg indices in terms of five 1 

soil variables; % organic carbon, % organic nitrogen, % soil moisture, soil pH and 2 

Olsen’s extractable phosphorus. All were measured in a subset of the quadrats 3 

(n=1033) in the Countryside Survey dataset recorded in 1998 and 1999 (see Black et 4 

al. 2001 for full details). The best minimum adequate model (Crawley 2007) was 5 

determined by fitting sequences of soil variables plus their quadratic and interaction 6 

terms and comparing the performance of pairs of simple and more complex models by 7 

deviance reduction (F) tests (e.g. Manning et al. 2005). This process was carried out 8 

for loge, logit and untransformed response variables. Because the calibration dataset 9 

of paired soil measurements and mean Ellenberg indices consisted of quadrats nested 10 

in the 1km sample squares of the Countryside Survey, the 1km square was treated as a 11 

random effect in a general linear mixed model (GLMM) implemented in SAS proc 12 

mixed (Little et al. 2000). The degrees of freedom attaching to each model were 13 

downweighted according to the approximation of Satterthwaite (1946).  14 

The importance of each explanatory variable in each final model was expressed by 15 

determining the unique (partial) contribution of each variable in the presence of all 16 

other selected variables and then comparing this to its explanatory power when 17 

entered as the only variable in each model (Singer 1998).  18 

 19 

Calculation of model pmax values 20 

 At the scale of small vegetation sampling plots, species that are inherently less 21 

frequent even when abiotic conditions are optimal, will have lower predicted 22 

maximum probabilities than more abundant species (Manel et al. 2001; Liu et al. 23 

2005). Hence, differences in probability of occurrence between species will reflect 24 

overall patterns of scarcity in the training dataset as well as reflecting the favourability 25 
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of abiotic conditions. If predicted probabilities are divided by the maximum 1 

probability (pmax) possible then these effects are removed enabling probabilities to be 2 

used as standardised indices of habitat suitability. Two methods were used to 3 

determine pmax values (see Appendices 1 and 2).  4 

 5 

Model testing 6 

 A subset of niche models were tested against independent species presence 7 

data recorded as part of a botanical monitoring program for conservation management 8 

of agriculturally managed land in Britain. Monitoring plots were located in six 9 

geographically dispersed regions designated as Environmentally Sensitive Areas 10 

(ESA).  Test data consisted of 244 4m2 quadrats recorded in 1995 or 1996 in a range 11 

of species-rich grassland and heathland communities. In each quadrat a full list of all 12 

vascular plants and bryophytes was made. In addition, soil was sampled immediately 13 

adjacent to each quadrat and analysed to provide representative values of soil 14 

variables (see Critchley et al. 2002 for full details).  15 

106 plant species occurred in greater than 5 quadrats. These were selected for 16 

model testing. Two series of predictions were made. First, niche models were used to 17 

predict the occurrence of each of the 106 plant species in each ESA quadrat using the 18 

mean unweighted Ellenberg N, R and F values and cover-weighted canopy height 19 

derived from the plant species composition of each quadrat. Second, measured soil 20 

pH, %C, %N and estimated % soil moisture were used to predict corresponding mean 21 

Ellenberg values instead of calculating them directly from each species list. Average 22 

soil moisture content was not measured directly but was inferred from soil texture 23 

class using the equivalence table in Anon (1998). The AUC statistic was then 24 

computed across the range of predicted values for each species using a macro written 25 



 11 

in base SAS. Recent concerns have been raised over the sensitivity of the AUC 1 

statistic to the inclusion of unoccupied plots far from the favourable niche space of 2 

each species (Lobo et al. 2008). Since our test dataset was constrained to sample 3 

habitats for which the test species were broadly characteristic, this issue is not likely 4 

to undermine interpretation of AUC statistics as model performance measures. 5 

  6 

Results  7 

Explaining mean Ellenberg values with soil variables 8 

Multiple regression models were constructed between all three mean 9 

unweighted Ellenberg scores and soil variables (Table 2). The percentage of observed 10 

variation explained was moderately high. Ellenberg F was best explained solely by % 11 

soil moisture content while selection of the best minimum adequate model vindicated 12 

treatment of mean Ellenberg R and N values as composite indices best explained by 13 

multiple soil measurements (Table 2). Mean Ellenberg R was best explained by a 14 

combination of % soil moisture, soil pH and % carbon. The sign of the regression 15 

coefficients (Table 2) indicated that species associated with lower substrate pH (low 16 

Ellenberg R) tend to be favoured by wetter substrates with a higher carbon content. 17 

Examination of the independent versus partial contribution of selected variables 18 

showed very considerable overlap so that the total explained variation mainly 19 

comprised joint variation in %C, %soil moisture and soil pH (Fig 2a). This reflects 20 

their correlation across the training dataset, in part related to obvious mechanistic 21 

relationships. For example, waterlogging and lack of aeration inhibits decomposition 22 

but enhances base cation mobilisation and leaching and hence, low base status and 23 

low pH. The highest unique explanatory power was attributable to substrate pH as 24 
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expected since Ellenberg R values were designed to track a substrate pH gradient (Fig 1 

2a).  2 

Mean Ellenberg N was best explained by % soil moisture, soil pH, % carbon 3 

and % nitrogen (Fig 2b). Quadratic terms for moisture content and pH captured 4 

expected curvi- linear relationships with productivity. Hence, mean Ellenberg N values 5 

tend to be lowest at the extremes of soil moisture and pH, and highest under mesic 6 

conditions (Emmett et al., 2004).  However, again, the majority of the explained 7 

variation was shared between predictors, whilst soil moisture content 8 

(linear+quadratic terms) had the highest unique explanatory power overall (Fig 2b). 9 

Overall therefore, the explanatory power of any one variable could not be completely 10 

separated from the others once more reflecting mechanistic relationships between soil 11 

moisture, carbon and nitrogen content and pH and their inter-correlation across the 12 

training data. %N had the lowest unique explanatory power of all terms selected for 13 

the final model (Fig 2b).  14 

 15 

Model building 16 

Of 2059 higher and lower plant species recorded in the training dataset, 1252 17 

occurred in more than 10 quadrats. Of these a GLM model with at least one 18 

significant explanatory variable could be constructed for all except 11 species. A 19 

further 111 species were modelled but then rejected from further validation and 20 

testing. These species have a coastal distribution (defined following Hill et al. 2004). 21 

Because we lacked quadrat-scale data on salt load either from the atmosphere or 22 

through inundation, we could not incorporate quantitative response along this 23 

important gradient. These species models were therefore considered inadequately 24 

specified and results are not presented. In total, models were produced for 327 25 
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bryophytes and 803 higher plants (Appendix 3 – supplementary material). This 1 

amounts to 26% of the UK bryophyte flora as listed in BRYOATT (Hill et al. 2007) 2 

and 44% of the UK higher plant flora as listed in PLANTATT (Hill et al. 2004). 3 

Among higher plants, 15% of alien casuals and recent introductions (neophytes), and 4 

55% of native species have models. For 639 of these species (286 bryophytes and 383 5 

higher plants), at least one climatic gradient explained significant variation in the 6 

presence of other abiotic variables (Appendix 4).  As expected, rarer plants are much 7 

less likely to have models than more widely distributed species (see Appendix 5).  8 

  9 

Model testing  10 

 Of the 106 plant species models that were tested (13% of the higher plant 11 

models produced), results differed depending on whether niche models were solved 12 

using mean Ellenberg indices derived from the observed species composition in the 13 

test quadrats or where mean Ellenberg indices were predicted from observed soil data 14 

using the multiple regression equations. AUC statistics showed that predictions of 15 

habitat suitability based on mean Ellenberg values derived from the observed species 16 

composition resulted in 61% of model performance classified as excellent or good 17 

(Swets, 1988) but this dropped to only 22% when soil variables were used to predict 18 

mean Ellenberg values (Fig 3). 19 

 20 

Discussion 21 

Application and interpretation of static realised niche models 22 

We have produced niche models for a large proportion of the British native         23 

higher plant flora and a substantial number of infrequent to common bryophyte 24 

species. While they constitute a useful, statistical description of the realised niche of 25 
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each species they should be applied cautiously since, as with any empirical model 1 

based on observed spatial patterns, their formulation will partly reflect biases in the 2 

training data. For example, our models are largely based on phytosociological data. 3 

Such data are collected to census the total variation in plant communities across a 4 

territory such that rare and common communities are all represented, however there is 5 

a bias towards homogenous stands and this may under-represent less favourable loci 6 

for some species thus overestimating the rate at which a species’ habitat suitability 7 

declines moving away from its optimum (Hirzel & Guisan 2002).  8 

Just as spatial bias is likely, the choice of years of survey is limited by data 9 

availability yet could influence niche description. The majority of the training datasets 10 

depict species and environment relationships across Britain from the 1950s through to 11 

the late 80s. Exploiting data from this time interval coupled with the exclusion of 12 

most alien casuals and rare species should ensure that the modelled response surfaces 13 

do not miss occupied niche space because of lack of range expansion or regional 14 

extinction (Walker 2007). More importantly, many of the models may depict 15 

equilibrium conditions that could increasingly break down as populations exhibit slow 16 

delayed responses to habitat fragmentation (Lindborg & Erikkson 2004) and recent 17 

climate change (Guisan & Theurillat 2000; Thuiller et al. 2005). Such problems 18 

should not prevent the application and development of models based on extensive 19 

databases of species occurrence but predictions ought to be treated as first 20 

approximations from which deviations in newly observed data are to be expected. 21 

Hence, interpretation of model inaccuracy ultimately increases understanding of the 22 

constraints on each species occurrence in particular situations (Barry & Elith 2006; 23 

Araújo et al 2005).  24 
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The development of any ecological model trades off  local realism against 1 

generality. Our niche models reflect the responses of plant species to principal abiotic 2 

gradients across British habitats, expressed as species presence in relatively small 3 

plots. At this scale, even though abiotic conditions are favourable, a species may be 4 

absent because of dispersal history (Svenning & Skov 2004), current dispersal 5 

limitation (Ozinga et al. 2005), the absence of appropriate gaps (Britton et al. 2000; 6 

Rasran et al. 2007), cyclic response to pathogens (Strengbom et al. 2002; Terry et al. 7 

2004) or other multi-scale constraints on the density of individuals across patchy 8 

landscapes (Tyre et al. 2001; Liebold et al. 2004). An inability to predict such regional 9 

and local influences is less of a problem if rescaled predicted probabilities are 10 

interpreted as indices of abiotic suitability rather than predictions of probable presence 11 

(Hirzel et al. 2001; Barry & Elith 2006).  12 

 13 

Combining climate and plot-scale abiotic conditions in niche models 14 

Attempts to predict species responses to climate change often show that 15 

models trained only on climate variables perform poorly when tested on independent 16 

data. Results vary between species but highlight the importance of the conditioning 17 

effects of other abiotic conditions related to land-use impacts, landscape structure and 18 

natural variation in topography and soils below the resolution of gridded climate 19 

datasets (Broennimann et al. 2007; Beale et al. 2008; Araújo et al. 2005). Hence, the 20 

best models of biodiversity change are likely to include interactions and main effects 21 

between these additional factors and climate variables. This is especially so across 22 

densely populated and intensively farmed landscapes where restoration and 23 

maintenance of habitats frequently relies on management intervention to control 24 

successional processes, soil moisture and nutrient availability. The inclusion of 25 
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interaction terms between climate and local patch conditions also allows models to 1 

reflect shifts in optima and tolerances near to range edges.  2 

In 57% of the British plant species niche models, at least one climate variable 3 

explained significant additional variation in species presence. In some cases the 4 

absence of climate variables in a species model will reflect weaker correlations 5 

between climate and species simply because of the less precise spatial match between 6 

coarser scale climatic variables that cannot vary within a 5km2 versus  species 7 

occupancy that could vary greatly between the plots within a 5km2 (Trivedi et al. 8 

2008). Clearly, inclusion of climate variables in species models also depends upon the 9 

occurrence of clines in species occupancy that are correlated with climate gradients 10 

across the domain sampled (Randin et al. 2006). For many British species, favourable 11 

climate is encountered throughout the sampling domain so that modelling the climatic 12 

range edge would require occupancy data from the near continent of Europe. Many of 13 

the species without climate variables in their models are likely to fall into this 14 

category.   15 

  16 

Using mean Ellenberg values as explanatory variables; a necessary evil?  17 

Our approach differed from previous attempts to explain mean Ellenberg 18 

values in terms of measured data (e.g. Ertsen et al. 1998) in that multiple soil 19 

variables were allowed to predict each mean Ellenberg index rather than a calibration 20 

relationship sought from a hypothesised link between a single dependent soil variable 21 

and a single mean Ellenberg value; for example attempting to model soil C/N in terms 22 

of just mean Ellenberg N (fertility) or soil moisture in terms of just mean Ellenberg F 23 

(wetness). Here the mean Ellenberg value was treated as the dependent variable which 24 

we sought to model in terms of multiple explanatory soil variables.  25 
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 While the calibration equations between soil data and mean Ellenberg indices 1 

solve an important problem, they contribute uncertainty related to the fact that mean 2 

Ellenberg scores are generally poorly explained by single soil variables. This leads to 3 

high residual variation (Ertsen et al. 1998; van Dobben et al. 2004; Wamelink et al. 4 

2002). Hill & Carey (1997) however, found that hay yield explained 83% of the 5 

variation in mean Ellenberg N between the treatments of the Rothamsted Park Grass 6 

experiment, thus Ellenberg N is better treated as an index of above-ground 7 

productivity rather than available nitrogen. Since annual primary production is a 8 

function of a complex of intercorrelated factors including soil macro-nutrient status, 9 

soil moisture and seasonal climatic effects (Silvertown et al. 1994; Dunnett et al. 10 

1998) it is reasonable to treat mean Ellenberg values as composite indices that ought 11 

to be more fully explained by multiple factors. Using this approach we have produced 12 

much higher r2 values than reported for previous attempts to model single abiotic 13 

measurements in terms of single mean Ellenberg values (Ertsen et al. 1998; van 14 

Dobben et al. 2004). However, a feature of the resulting multiple regression models 15 

for mean Ellenberg N and R is that the majority of the total explanatory power is 16 

shared between contributing terms. That is, the amount of unique explanatory power 17 

contributed by a single term reduces greatly when another term is present. The models 18 

thus have a high degree of redundancy despite all terms contributing sufficient partial  19 

explanatory power to justify inclusion in each final model.  20 

Regarding the desirability of modelling species presence directly from soil 21 

variables, it is notable that model testing on independent data indicated the much 22 

poorer performance of models solved by predicting mean Ellenberg indices from a 23 

minimum set of soil variables. This emphasises the extent to which mean Ellenberg 24 

indices are not well explained by the available soil variables yet the models based 25 
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solely on mean Ellenberg values calculated from the species composition itself 1 

performed much better. This cannot have been due to circularity between modelled 2 

species presence and mean Ellenberg value in the training data because explanatory 3 

variables for the focal species’ were always excluded from occupied plots during 4 

model building despite the possibility that this could lead to substantial reductions in 5 

information content in species poor plots. The high shared variance between measured 6 

soil variables used to predict mean Ellenberg values reflects predictable relationships 7 

between soil pH, soil moisture, %C and %N but their poor combined ability to predict 8 

mean Ellenberg values must highlight the importance of other factors such as primary 9 

productivity and other controls on local species composition including species pool 10 

effects and the legacy of land-use history (Smart & Scott 2004). The expected link  11 

between soil conditions and indicator values can also be weakened by managed 12 

disturbance (Diekmann 2003). This may also explain the very poor performance of 13 

the soil and mean Ellenberg regression models when applied to the test data since a 14 

large proportion of these data sampled managed grasslands. It is also possible that the 15 

estimation of volumetric soil moisture content from soil texture values reduced  the 16 

accuracy of the soil-derived predictions. Extended testing on a wider range of datasets 17 

is clearly essential.   18 

 19 

GLM as a tool for capturing niche properties - skewness, variable tolerances and 20 

bimodality 21 

Despite the recent demonstration of an array of more sophisticated modelling 22 

techniques (Guisan et al. 2006; Elith et al. 2006), GLM remains an attractive member 23 

of the family of species distribution modelling methods (eg. Manel et al. 1999; Bailey 24 

et al. 2002; Berg et al. 2004). Given its simplicity, GLM performs well in comparison 25 
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with other techniques (Ellith et al. 2006) and its lower propensity to overfit training 1 

datasets appears to favour application in regions other than the one used to train the 2 

models (Randin et al. 2006; Stockwell & Peterson, 2002 but also see Araújo et al. 3 

2005). The most persuasive reason for using GLM was that interaction terms could be 4 

explicitly modelled and the empirical realised niche for each species described using a 5 

single, simple equation readily applicable to new situations, and amenable to the 6 

derivation of pmax values and the optimum abiotic conditions associated with them 7 

(Roy et al., 2000; Coudun & Gégout, 2006). Incorporation of interaction terms was 8 

especially important because many plant species are known to exhibit conditional 9 

responses to abiotic conditions on one gradient that depend upon their position along 10 

another (Diekmann 2003; Smart et al. 2006; Pakeman et al. 2008). By modelling 11 

quadratic and interaction terms along multiple gradients, we found that important 12 

aspects of species’ responses can be recovered, such as skewed optima, multiple 13 

optima and varying tolerances (Minchin 1987; Huston 2002; Oksanen & Minchin 14 

2002; Austin et al. 2006). The GLM models satisfactorily captured differences in 15 

tolerance around species optima and therefore reflected varying degrees of specialist 16 

versus generalist behaviour along different abiotic gradients (Fig 4 a-b). Skewed 17 

optima with asymmetric response curves are typical of species associated with abiotic 18 

extremes. These patterns are also recoverable by the GLM approach (Fig 4 c-e).  19 

When applied to multiple gradients and their interactions, GLM can also 20 

capture bimodality even if 3rd or 4th order terms are absent. Cirsium dissectum for 21 

example, has two apparent peaks of occurrence along the wetness (Ellenberg F) axis 22 

and these are expressed in a model with no 3rd or 4th order terms but with significant 23 

interaction terms for Ellenberg R*Ellenberg N, Ellenberg F*canopy height and 24 

Ellenberg F*Ellenberg N (Fig 4 f and Appendix 3). This species is associated with a 25 
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wider range of productivity in its somewhat drier situations but only with highly 1 

infertile conditions in its wettest habitats where the vegetation also tends to be shorter.  2 

The interaction between Ellenberg R and N appears to reflect the fact that its near 3 

neutral loci tend to be less productive than its higher pH situations.  4 

Including multiple explanatory variables in combination with their interaction 5 

terms can clearly improve the fit of each model along each individual gradient without 6 

invoking additional parameters to capture multiple or skewed modes. Hence models 7 

appear capable of capturing situations where the separation of different optima 8 

depends upon the conditional influence of other gradients (Pakeman et al. 2008).   9 

 10 

Prospects for modelling the impact of multiple drivers at small scales 11 

Current global ecological change involves multiple human drivers and may 12 

lead to novel environmental states (Steffen et al. 2004). These aspects emphasise the 13 

importance of models that can be used to reliably explore future scenarios of change 14 

as well as being used to attribute variation in historical observations to alternative 15 

causes. However, scientific and policy interest still centres on the fate of many 16 

individual species even though it is not feasible to build a process model for each. 17 

Pragmatic approaches to the problem are required. For example, the impact of 18 

multiple drivers on ecosystem functions such as primary production and nutrient 19 

cycling, can be modelled dynamically by the best available process models and the 20 

outputs then used to solve empirical niche models over a range of time steps thus 21 

generating trajectories of change in habitat suitability for selected indicator species 22 

including those known to be present in local species pools (van Dobben et al. 2004; 23 

Wamelink et al. 2005b).  24 
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In terms of model application and future development, two conclusions can be 1 

drawn from our model tests. The better performance of niche models solved using 2 

mean indicator values derived from the observed species composition rather than 3 

solved using soil variables indicates that factors in addition to soil measurements need 4 

to be taken into account. However, soil conditions ought to be powerful predictors of 5 

species presence. It is possible that ineffective sampling rather than low explanatory 6 

power per se is responsible. For example many soil measurements rely on small 7 

bulked samples taken at one point in time. Thus any one soil sample may poorly 8 

represent the average spatial and temporal conditions experienced by the range of 9 

species censussed in the plot and more effectively integrated by the mean Ellenberg 10 

values (Schaffers & Sýkora 2000; Diekmann 2003; Hill & Carey 1997). 11 

At present the niche models are most reliably applied at the vegetation patch 12 

scale. Thus habitat suitability indices can be generated using observed species 13 

composition and canopy height with or without local climate data. Such applications 14 

could quantify changes in the appropriateness of current conditions for maintenance 15 

or reintroduction of target species, or help evaluate the impact of observed or 16 

expected changes in species composition on habitat suitability for possible invaders. 17 

Linking the niche models to outputs from biogeochemical models is also required to 18 

test scenarios of the impact of changing atmospheric nitrogen deposition on plant 19 

assemblages across Europe (DeVries et al. in press). Since, soil variables such as pH, 20 

%C and %N are outputs from these models, improvements in the accuracy of such 21 

model chains will depend on better modelling of species presence in terms of 22 

measured soil variables. This can be achieved in two ways; by either developing 23 

better predictive models of  mean indicator values, which we have shown can 24 

effectively model presence of many British species, or by directly predicting species 25 
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presence in terms of soil and other data as a result of an extended campaign of new 1 

environmental measurements at the places species grow. For many national territories 2 

and their florae the second option is likely to be prohibitively costly. We suggest that 3 

modelling via mean indicator values is a more efficient tactic because it is likely to be 4 

less costly to improve the prediction of mean indicator values along each abiotic 5 

gradient via new targeted soil sampling, than to implement species-specific campaigns 6 

of new soil sampling to improve the predictive power of each separate species model.. 7 

Having established that mean indicator gradients provide effective explanatory power 8 

for a large number of species, we suggest that new sampling should focus on a larger 9 

number of soil factors sampled with greater temporal and spatial resolution along each 10 

abiotic gradient.        11 

 12 
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Table 1. Plant species occurrence data used to train British niche models for higher 1 

and lower plants. 2 

 3 

Survey source Sample size  Sampling method Number of 

samples 

Date of 

collection 

National Vegetation 

Classification 

(Rodwell, 1991 et 

seq) 

4m2 to 250m2 Phytosociological – 

targeted 

homogenous stands 

to census full range 

of plant community 

variation across 

Britain 

31266 1950 - 1980 

The Key Habitats 

surveys of Britain 

(Hornung, 1996) 

4m2 Random within a 

random selection of 

1km squares 

stratified by three 

landscape GIS 

masks for upland, 

calcareous 

grassland and 

lowland heathland 

ecosystems 

548 1992 

Broadleaved 

woodland survey of 

Britain (Kirby et 

200m2 16 plots at random 

within each of 103 

representative sites 

1648 1971 
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al., 2005; Corney et 

al., 2006) 

Britain  

Countryside Survey 

of Great Britain 

(Smart et al., 2003) 

4 to 200m2 Random plots 

within a random 

selection of 569 

1km squares across 

Britain stratified by 

ITE Land Class 

7221 1998/’99 

  1 
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Table 2. Calibration equations that predict values of mean unweighted Ellenberg 1 

values from four soil variables; MC (%soil moisture content), soil pH, C (%organic 2 

carbon) and N (%organic nitrogen). See text for further details. 3 

 4 

Unweighted mean 

Ellenberg score  

% 

variance 

explained 

Equation 

F (wetness) 70.1 =ln ((MC/(100-MC))+3.27)/0.55 

R (substrate pH)  77.9 =0.5293-0.02503(MC)+1.665(pH)-0.1061(pH2)-

0.00566(C) 

N (substrate fertility) 78.2 =exp(0.7751-0.00006(MC)-0.00009(MC2)-

0.01475(C)+ 0.000099(C2)+0.2639(pH)-

0.01684(pH2)+0.1908(N)) 

 5 

 6 
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Figure1. Flow diagram showing model building (B) and testing (T) steps. Species 1 

presence was measured as occupancy in plots that ranged from 2 to 200m2. Climate 2 

variables were based on interpolated data for the 5km2 containing each plot. Other 3 

explanatory variables were measured at the plot scale. 4 
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FIG 1.  1 
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Figure 2. Partitioning observed variation in mean Ellenberg indices among 1 

explanatory variables selected for inclusion in the best minimum adequate model for 2 

each index. a. Mean Ellenberg R, b. Mean Ellenberg N. MC = % soil moisture, C = % 3 

organic carbon, N = % organic nitrogen. Marginal=variation uniquely explained by 4 

each variable with no other variables present. Partial=variation uniquely explained 5 

when other variables were included.  6 
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FIG 2.  1 
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  Figure 3. AUC results for GLM model predictions of the presence of 106 higher 1 

plant species in independent vegetation plot data from English Environmentally 2 

Sensitive Areas. Models were solved using cover-weighted canopy height plus either 3 

mean Ellenberg values calculated from the observed species composition of each plot 4 

or using mean Ellenberg values predicted from observed soil data for each plot 5 

(n=244). AUC values classified according to the guidance in Swets (1988); excellent 6 

>=0.9, good 0.8 to 0.9, , poor 0.7 to 0.8, fail <0.7 . 7 
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FIG 3.  1 
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Figure 4. Examples showing the fit of species models to the GB training dataset. Open 1 

diamonds and the solid line (moving average) show the model prediction of habitat 2 

suitability along each gradient. GLM models were solved at intervals of 0.2 Ellenberg 3 

index units along the x-axis. Terms for other abiotic gradients were then solved in 4 

each interval using the average values for the other explanatory variables in plots 5 

occupied by the species concerned within each interval. In each graph, probabilities 6 

were rescaled by the pmax value for each species. Black squares and the dashed line 7 

(moving average) indicate the proportion of plots in each interval actually occupied 8 

by the species.   9 

 10 
 11 



 49 

FIG 4. 1 
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FIG 4 contd. 1 
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e. 1 

Centaurea nigra
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